$\mu = 0.08 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.013$

136 parameters

 $\Delta \rho_{\text{max}} = 0.10 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

 $0.32 \times 0.30 \times 0.22 \text{ mm}$

5389 measured reflections

1956 independent reflections

1661 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-Cyclohexylnicotinamide

Na Li

Shenyang Research Institute of Chemical Industry, Shenyang 110021, People's Republic of China

Correspondence e-mail: joycelina@163.com

Received 2 June 2010; accepted 17 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.096; data-to-parameter ratio = 14.4.

In the title compound, $C_{12}H_{16}N_2O$, the dihedral angle between the pyridine ring and C/O/N plane is 22.93 (7)°. In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules, forming extended chains along [001]. π - π interactions between inversion-related pyridine rings [centroidcentroid distance = 3.825 (2)Å] are also observed.

Related literature

For background information on metal-organic framework compounds, see: Subramanian & Zaworotko (1994); Kitagawa *et al.* (2004); Rosi *et al.* (2005). For details of the synthesis, see: Basolo *et al.* (2009).

a = 17.596 (2) Å

b = 6.4050 (8) Å

 $c = 10.1167 (12) \text{ \AA}$

Experimental

Crystal data

$C_{12}H_{16}N_2O$	
$M_r = 204.27$	
Monoclinic, $P2_1/c$	

$\beta = 103.921 (2)^{\circ}$
$V = 1106.7 (2) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.869, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.096$ S = 1.061956 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O1^i$	0.86	2.17	2.9998 (13)	162
S	. 3 . 1			

Symmetry code: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2247).

References

- Basolo, L., Beccalli, E. M., Borsini, E. & Broggini, G. (2009). *Tetrahedron*, **65**, 3486–3490.
- Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kitagawa, S., Kitaura, T. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.
- Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504–1518.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Subramanian, S. & Zaworotko, M. J. (1994). Coord. Chem. Rev. 137, 357-401.

supplementary materials

Acta Cryst. (2010). E66, o1759 [doi:10.1107/S1600536810023408]

N-Cyclohexylnicotinamide

N. Li

Comment

Metal-organic frameworks (MOFs) have attracted much attention because of their intriguing topologies (Subramanian & Zaworotko,1994; Kitagawa *et al.*, 2004; Rosi *et al.*, 2005). During our efforts to investigate the assembly of metal-organic coordination frameworks, a new compound was generated accidentally and its crystal structure is described in this paper. A dedicated synthesis of the compound was previously described by Basolo *et al.*, (2009). The molecular structure of compound is shown in Fig. 1. The dihedral angle between the mean plane of the pyridine ring and the plane formed by atoms C/O/N is 22.93 (7)°. In the crystal structure N—H···O hydrogen bonds involving the acyl O atoms and the adjacent N—H group, form one-dimensional chains along [001] (Fig. 2). There are also π - π interactions involving inversion related pyridine rings.

Experimental

All the starting materials and solvents for syntheses were obtained commercially and used as received. $Zn(OAc)_2.4H_2O$ (21.8 mg, 0.1 mmol) and *N*-cyclohexylnicotinamide (20.4 mg, 0.1 mmol) were mixed in a CH₃CN/H₂O (20 ml, 1:1 v/v) solution with vigorous stirring for *ca* 30 min. The resulting solution was filtered and left to stand at room temperature. Pale-yellow prismatic crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent over a period of 1 week.

Refinement

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions, with C—H distances in the range 0.93–0.97Å and N—H distances of 0.86 Å, and included in the final refinement in the riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(C,N)$ for cyclohexyl and nicotinamide H atoms.

Figures

Fig. 1. The molecular structure of the title compound showing 30% probability ellipsoids.

Fig. 2. The one-dimensional chain structure of the title compound, showing N—H…O hydrogen bonds as red dashed lines.

N-cyclohexylnicotinamide

Crystal data

C₁₂H₁₆N₂O $M_r = 204.27$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.596 (2) Å b = 6.4050 (8) Å c = 10.1167 (12) Å $\beta = 103.921$ (2)° V = 1106.7 (2) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer	1956 independent reflections
Radiation source: fine-focus sealed tube	1661 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.013$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -20 \rightarrow 20$
$T_{\min} = 0.869, T_{\max} = 1.000$	$k = -7 \rightarrow 7$
5389 measured reflections	$l = -7 \rightarrow 12$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.096$	H-atom parameters constrained
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0474P)^2 + 0.1872P]$ where $P = (F_o^2 + 2F_c^2)/3$
1956 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
136 parameters	$\Delta \rho_{max} = 0.10 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations

F(000) = 440 $D_x = 1.226 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2901 reflections $\theta = 2.8-29.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KBlock, pale yellow $0.32 \times 0.30 \times 0.22 \text{ mm}$ between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
O1	0.26804 (6)	0.73912 (16)	0.77836 (8)	0.0572 (3)
N1	0.43960 (7)	1.0508 (2)	1.16302 (11)	0.0604 (3)
N2	0.25623 (6)	0.64514 (17)	0.98679 (9)	0.0421 (3)
H2	0.2706	0.6688	1.0729	0.051*
C1	0.36028 (8)	1.0899 (2)	0.89337 (13)	0.0535 (4)
H1	0.3346	1.1024	0.8019	0.064*
C2	0.41240 (9)	1.2403 (2)	0.95508 (15)	0.0620 (4)
H2A	0.4222	1.3564	0.9065	0.074*
C3	0.44952 (8)	1.2162 (2)	1.08908 (15)	0.0597 (4)
Н3	0.4835	1.3208	1.1310	0.072*
C4	0.38905 (8)	0.9069 (2)	1.10174 (13)	0.0500 (3)
H4	0.3819	0.7899	1.1518	0.060*
C5	0.34619 (7)	0.9201 (2)	0.96774 (11)	0.0401 (3)
C6	0.28717 (7)	0.7604 (2)	0.90309 (11)	0.0408 (3)
C7	0.19904 (7)	0.48073 (19)	0.93833 (11)	0.0402 (3)
H7	0.2126	0.4131	0.8602	0.048*
C8	0.20335 (8)	0.3175 (2)	1.04845 (13)	0.0479 (3)
H8A	0.1929	0.3827	1.1288	0.057*
H8B	0.2557	0.2590	1.0732	0.057*
C9	0.14451 (9)	0.1438 (2)	1.00039 (15)	0.0572 (4)
H9A	0.1584	0.0687	0.9263	0.069*
H9B	0.1464	0.0462	1.0744	0.069*
C10	0.06238 (9)	0.2285 (2)	0.95261 (14)	0.0556 (4)
H10A	0.0269	0.1151	0.9166	0.067*
H10B	0.0460	0.2884	1.0294	0.067*
C11	0.05771 (8)	0.3929 (2)	0.84404 (13)	0.0543 (4)
H11A	0.0053	0.4511	0.8203	0.065*
H11B	0.0677	0.3288	0.7630	0.065*
C12	0.11653 (7)	0.5674 (2)	0.89148 (13)	0.0482 (3)
H12A	0.1144	0.6650	0.8174	0.058*
H12B	0.1030	0.6423	0.9659	0.058*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0711 (6)	0.0719 (7)	0.0293 (5)	-0.0167 (5)	0.0134 (4)	-0.0038 (4)
N1	0.0581 (7)	0.0738 (8)	0.0439 (6)	-0.0118 (6)	0.0014 (5)	-0.0022 (6)

supplementary materials

N2	0.0492 (6)	0.0490 (6)	0.0286 (5)	-0.0060 (5)	0.0102 (4)	-0.0030 (4)
C1	0.0543 (8)	0.0661 (9)	0.0378 (7)	-0.0094 (7)	0.0069 (6)	0.0063 (6)
C2	0.0659 (9)	0.0628 (9)	0.0563 (9)	-0.0178 (7)	0.0128 (7)	0.0086 (7)
C3	0.0556 (8)	0.0653 (9)	0.0554 (8)	-0.0164 (7)	0.0079 (7)	-0.0062 (7)
C4	0.0512 (7)	0.0587 (8)	0.0381 (7)	-0.0055 (6)	0.0068 (5)	0.0033 (6)
C5	0.0386 (6)	0.0502 (7)	0.0332 (6)	0.0011 (5)	0.0120 (5)	-0.0004 (5)
C6	0.0429 (7)	0.0490 (7)	0.0316 (6)	0.0017 (5)	0.0110 (5)	-0.0005 (5)
C7	0.0487 (7)	0.0405 (6)	0.0323 (6)	-0.0020 (5)	0.0111 (5)	-0.0045 (5)
C8	0.0562 (8)	0.0439 (7)	0.0421 (7)	0.0049 (6)	0.0090 (6)	0.0033 (6)
C9	0.0818 (10)	0.0390 (7)	0.0517 (8)	-0.0031 (7)	0.0176 (7)	0.0036 (6)
C10	0.0653 (9)	0.0554 (8)	0.0466 (8)	-0.0180 (7)	0.0144 (6)	-0.0041 (6)
C11	0.0544 (8)	0.0589 (9)	0.0455 (7)	-0.0084 (6)	0.0039 (6)	-0.0002 (6)
C12	0.0524 (7)	0.0430 (7)	0.0459 (7)	-0.0009 (6)	0.0054 (6)	0.0047 (6)

Geometric parameters (Å, °)

O1—C6	1.2328 (14)	C7—C12	1.5196 (17)
N1—C4	1.3262 (17)	С7—Н7	0.9800
N1—C3	1.3326 (19)	C8—C9	1.5176 (19)
N2—C6	1.3341 (15)	C8—H8A	0.9700
N2—C7	1.4576 (15)	C8—H8B	0.9700
N2—H2	0.8600	C9—C10	1.510(2)
C1—C2	1.373 (2)	С9—Н9А	0.9700
C1—C5	1.3783 (18)	С9—Н9В	0.9700
C1—H1	0.9300	C10-C11	1.5096 (19)
C2—C3	1.365 (2)	C10—H10A	0.9700
C2—H2A	0.9300	C10—H10B	0.9700
С3—Н3	0.9300	C11—C12	1.5203 (18)
C4—C5	1.3863 (17)	C11—H11A	0.9700
C4—H4	0.9300	C11—H11B	0.9700
C5—C6	1.4919 (17)	C12—H12A	0.9700
С7—С8	1.5164 (17)	C12—H12B	0.9700
C4—N1—C3	116.98 (11)	С7—С8—Н8А	109.4
C6—N2—C7	122.71 (9)	С9—С8—Н8А	109.4
C6—N2—H2	118.6	С7—С8—Н8В	109.4
C7—N2—H2	118.6	С9—С8—Н8В	109.4
C2—C1—C5	119.59 (12)	H8A—C8—H8B	108.0
C2—C1—H1	120.2	C10—C9—C8	111.48 (11)
C5—C1—H1	120.2	С10—С9—Н9А	109.3
C3—C2—C1	118.70 (14)	С8—С9—Н9А	109.3
С3—С2—Н2А	120.6	С10—С9—Н9В	109.3
C1—C2—H2A	120.6	С8—С9—Н9В	109.3
N1—C3—C2	123.48 (13)	Н9А—С9—Н9В	108.0
N1—C3—H3	118.3	C11—C10—C9	111.33 (12)
С2—С3—Н3	118.3	C11—C10—H10A	109.4
N1—C4—C5	124.11 (13)	C9—C10—H10A	109.4
N1—C4—H4	117.9	C11—C10—H10B	109.4
С5—С4—Н4	117.9	С9—С10—Н10В	109.4
C1—C5—C4	117.05 (12)	H10A-C10-H10B	108.0

C1—C5—C6	119.96 (11)	C10-C11-C12	111.68 (10)
C4—C5—C6	122.99 (11)	C10-C11-H11A	109.3
O1—C6—N2	122.41 (11)	C12—C11—H11A	109.3
O1—C6—C5	120.95 (11)	C10-C11-H11B	109.3
N2—C6—C5	116.64 (10)	C12—C11—H11B	109.3
N2—C7—C8	110.04 (9)	H11A—C11—H11B	107.9
N2—C7—C12	111.81 (10)	C7—C12—C11	110.90 (11)
C8—C7—C12	110.86 (10)	C7—C12—H12A	109.5
N2—C7—H7	108.0	C11—C12—H12A	109.5
С8—С7—Н7	108.0	C7—C12—H12B	109.5
С12—С7—Н7	108.0	C11—C12—H12B	109.5
С7—С8—С9	111.12 (10)	H12A—C12—H12B	108.0
C5—C1—C2—C3	0.5 (2)	C1—C5—C6—N2	-157.12 (12)
C4—N1—C3—C2	-1.9 (2)	C4—C5—C6—N2	23.14 (18)
C1—C2—C3—N1	2.0 (3)	C6—N2—C7—C8	153.38 (11)
C3—N1—C4—C5	-0.6 (2)	C6—N2—C7—C12	-82.96 (14)
C2-C1-C5-C4	-2.8 (2)	N2-C7-C8-C9	-179.80 (10)
C2-C1-C5-C6	177.44 (12)	C12—C7—C8—C9	55.99 (14)
N1-C4-C5-C1	3.0 (2)	C7—C8—C9—C10	-55.68 (15)
N1—C4—C5—C6	-177.30 (12)	C8—C9—C10—C11	54.95 (15)
C7—N2—C6—O1	1.82 (19)	C9-C10-C11-C12	-54.88 (16)
C7—N2—C6—C5	-178.83 (10)	N2-C7-C12-C11	-178.89 (10)
C1—C5—C6—O1	22.24 (18)	C8—C7—C12—C11	-55.69 (14)
C4—C5—C6—O1	-157.50 (13)	C10-C11-C12-C7	55.31 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2···O1 ⁱ	0.86	2.17	2.9998 (13)	162
Symmetry codes: (i) x , $-y+3/2$, $z+1/2$.				

Fig. 1

Fig. 2